首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5816篇
  免费   720篇
  国内免费   246篇
化学   552篇
晶体学   17篇
力学   1631篇
综合类   31篇
数学   853篇
物理学   3698篇
  2024年   18篇
  2023年   53篇
  2022年   67篇
  2021年   99篇
  2020年   192篇
  2019年   166篇
  2018年   129篇
  2017年   157篇
  2016年   140篇
  2015年   185篇
  2014年   253篇
  2013年   369篇
  2012年   221篇
  2011年   350篇
  2010年   257篇
  2009年   336篇
  2008年   405篇
  2007年   357篇
  2006年   373篇
  2005年   289篇
  2004年   273篇
  2003年   267篇
  2002年   268篇
  2001年   193篇
  2000年   195篇
  1999年   141篇
  1998年   148篇
  1997年   112篇
  1996年   103篇
  1995年   98篇
  1994年   74篇
  1993年   77篇
  1992年   63篇
  1991年   63篇
  1990年   38篇
  1989年   32篇
  1988年   27篇
  1987年   25篇
  1986年   22篇
  1985年   31篇
  1984年   30篇
  1983年   8篇
  1982年   23篇
  1981年   14篇
  1980年   8篇
  1978年   4篇
  1977年   5篇
  1975年   3篇
  1974年   4篇
  1973年   6篇
排序方式: 共有6782条查询结果,搜索用时 218 毫秒
1.
We prove the existence of a L2-normalized solitary wave solution for the Maxwell-Dirac equations in (3+1)-Minkowski space. In addition, for the Coulomb-Dirac model, describing fermions with attractive Coulomb interactions in the mean-field limit, we prove the existence of the (positive) energy minimizer.  相似文献   
2.
3.
4.
Near-field optical trapping can be realized with focused evanescent waves that are excited at the water–glass interface due to the total internal reflection, or with focused plasmonic waves excited on the water–gold interface. Herein, the performance of these two kinds of near-field optical trapping techniques is compared using the same optical microscope configuration. Experimental results show that only a single-micron polystyrene bead can be trapped by the focused evanescent waves, whereas many beads are simultaneously attracted to the center of the excited region by focused plasmonic waves. This difference in trapping behavior is analyzed from the electric field intensity distributions of these two kinds of focused surface waves and the difference in trapping behavior is attributed to photothermal effects due to the light absorption by the gold film.  相似文献   
5.
The relationship between magnetoelectricity and electromagnetism is a subject of a strong interest and numerous discussions in microwave and optical wave physics and material sciences. The definition of the energy and momentum of the electromagnetic (EM) field in a magnetoelectric (ME) medium is not a trivial problem. The question of whether electromagnetism and magnetoelectricity can coexist without an extension of Maxwell's theory arises when the effects of EM energy propagation are studied and the group velocity of the waves in an ME medium is considered. The energy balance equation reveals unusual topological structure of fields in ME materials. Together with certain constraints on the constitutive parameters of a medium, definite constraints on the local field structure should be imposed. Analyzing the EM phenomena inside an ME material, the question “what kind of the near fields arising from a sample of such a material can be measured?” should be answered. The visualization of the ME states requires an experimental technique that is based on an effective coupling to the violation of spatial as well as temporal inversion symmetry. To observe the ME energy in a subwavelength region, it is necessary to assume the existence of first-principle near fields—the ME fields. These are non-Maxwellian near fields with specific properties of violation of spatial and temporal inversion symmetry. A particular interest to the ME fields arises in studies of metamaterials with “artificial-atoms” ME elements.  相似文献   
6.
This paper presents a new sensitivity analysis method for coupled acoustic–structural systems subjected to non-stationary random excitations. The integral of the response power spectrum density (PSD) of the coupled system is taken as the objective function. The thickness of each structural element is used as a design variable. A time-domain algorithm integrating the pseudo excitation method (PEM), direct differentiation method (DDM) and high precision direct (HPD) integration method is proposed for the sensitivity analysis of the objective function with respect to design variables. Firstly, the PEM is adopted to transform the sensitivity analysis under non-stationary random excitations into the sensitivity analysis under pseudo transient excitations. Then, the sensitivity analysis equation of the coupled system under pseudo transient excitations is derived based on the DDM. Moreover, the HPD integration method is used to efficiently solve the sensitivity analysis equation under pseudo transient excitations in a reduced-order modal space. Numerical examples are presented to demonstrate the validity of the proposed method.  相似文献   
7.
We study the nonlinear stability of rarefaction waves to the Cauchy problem of a one-dimensional viscous radiative and reactive gas when the viscosity and heat conductivity coefficients depend on both density and absolute temperature. Our main idea is to use the smallness of the strength of the rarefaction waves to control the possible growth of its solutions induced by the nonlinearity of the system and the interactions of rarefaction waves from different families. The proof is based on some detailed analysis on uniform positive lower and upper bounds of the specific volume and the absolute temperature.  相似文献   
8.
9.
We review work of Jordan on a hyperbolic variant of the Fisher–KPP equation, where a shock solution is found and the amplitude is calculated exactly. The Jordan procedure is extended to a hyperbolic variant of the Chafee–Infante equation. Extension of Jordan’s ideas to a model for traffic flow are also mentioned. We also examine a diffusive susceptible–infected (SI) model, and generalizations of diffusive Lotka–Volterra equations, including a Lotka–Volterra–Bass competition model with diffusion. For all cases we show how a Jordan–Cattaneo wave may be analysed and we indicate how to find the wavespeeds and the amplitudes. Finally we present details of a fully nonlinear analysis of acceleration waves in a Cattaneo–Christov poroacoustic model.  相似文献   
10.
The interactions of bubbles and coal particles in 600 kHz ultrasonic standing waves (USW) field has been investigated. A high-speed camera was employed to record the phenomena occurred under the USW treatment. The formation and behaviors of cavitation bubbles were analyzed. Under the driving of these cavitation bubbles, whose size is from several microns to dozens of microns, coal particles were aggregated and then attracted by large bubbles due to the acoustic radiation forces. The results of USW-assisted flotation show a significant improvement in recoveries at 600 kHz, which indicates that the interactions of bubbles and particles in the USW field are more efficient than that in the conventional gravitational field. Furthermore, the sound pressure distribution of the USW was measured and predicted by a hydrophone. The analysis of gravity and buoyancy, primary and secondary Bjerknes forces shows that bubble-laden particles can be attracted by the rising bubbles under large acoustic forces. This study highlights the potential for USW technology to achieve efficient bubble-particle interactions in flotation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号